THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010G/H University Mathematics 2014-2015
Assignment 2

- Due date: 12 Feb, 2015 (before 17:00)
- Remember to write down your name and student number
- Please work on ALL questions below.

Questions from Thomas Calculus:

Exercise 2.6: 35, 36, 83

Exercise 3.6: 37, 45, 55

1. Let $f(x)=x|x|$.
(a) Find $f^{\prime}(x)$ for $x>0$ and $x<0$ respectively.
(b) Prove that $f^{\prime}(0)$ exists.
(c) Prove that $f^{\prime}(x)$ is continuous at $x=0$.
(Caution: $f(x)$ is continuous at $x=0$ by (b), but we do not know whether $f^{\prime}(x)$ is also continuous at $x=0$.)
2. By using Mean Value Theorem, prove that $|\sin x-\sin y| \leq|x-y|$ for any real numbers x and y. (Hint: consider the cases $x<y, x=y$ and $x>y$.)
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that
(i) $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$.
(ii) $f(x)=1+x g(x)$, where $\lim _{x \rightarrow 0} g(x)=1$.

Show that $f^{\prime}(x)=f(x)$ for all $x \in \mathbb{R}$.

